Fertility of Soils of Tonga

Interim Report 2

- 1. Glasshouse Studies J.P. Widdowson
- 2. Soil Analyses L.C. Blakemore

Soil Bureau

Department of Scientific and Industrial Research, New Zealand

June 1976

FERTILITY OF SOILS OF TONGA

INTERIM REPORT 2

That To Lot # 15 to the

117 81 91 . .

SOILS EXAMINED IN THIS STUDY

TABLES	SOIL TYPE	ISLAND GROUP	ISLAND	SAMPLE NO.
		Vava'u		*
la [†] 2, 2a 3a [†] 4, 4a 5, 5a	Hunga clay Longomapu clay loam Neiafu clay loam Pangaimotu clay loam Tu'anekevale clay loam		Hunga Vava'u Vava'u Vava'u Vava'u	9153 TV2/1, 2/2 9165 9166 TV3/1, 3/2
		Ha'apai		
6, 6a 7, 7a 8, 8a 9, 9a 10* 11,11a 12,12a 13,13a 14,14a 15,15a 16*	Felemea clay Foa clay Foa clay Ha'afeva silt loam Ha'apai clay Lifuka clay Mango clay Nomuka clay Uiha clay loam Uoleva sandy loam		Uiha Foa Ha'ano Ha'afeva Nomuka Lifuka Lifuka Mango Nomuka Uiha Ha'ano	9179 9175 9186 9176 9172 9181 TH1/1, 1/2 9182 9171 9177 9190
		Tongatapu		
17,17a 18a+	Lapaha clay Lapaha clay, easy rollin phase	ng	Tongatapu Tongatapu	TT2/1, 2/2 9168
19,19a	Nuku'alofa sandy loam		Tongatapu	TT3/1, 3/2 (9113)
20,20a 21a ⁺	Vaini clay Vaini shallow clay		Tongatapu Tongatapu	TT1/1, 1/2 9167
		'Eua		
22a ⁺ 23a ⁺ 24,24a 25,25a 26,26a 27a ⁺ 28a ⁺	Faitoka clay loam Ha'atua clay loam Hango silty clay (H54) Hango silty clay (H8) Houma silty clay loam Kallau silty clay loam Kenani clay	,	'Eua 'Eua 'Eua 'Eua 'Eua 'Eua	9145 9148 9144 9143 9146 9149

- * Glasshouse studies only
 - + Chemical and particle size analysis only

THE RESERVE OF THE PARTY OF THE

.

1 ml ...1

PART 1. GLASSHOUSE EXPERIMENTS WITH GREEN PANIC ON SOME REPRESENTATIVE SOILS OF TONGA

INTRODUCTION

This section of the report presents the results of glasshouse experiments designed to assess the plant nutrient status of some representative Tongan soils. In this study the response of Green Panic, Panicum maximum var. trichoglume to the major nutrients, nitrogen, phosphorus, potassium, sulphur, and to the trace elements, molybdenum, boron, copper, zinc and manganese was examined using a subtractive technique. Green Panic was grown for four months under glasshouse conditions which simulated the climate of Tonga. The grass was harvested four times at intervals of three weeks, to a cutting height 10 cm above the soil surface.

The 6 treatments used on each soil are listed on the data sheets which follow. Grass undergoing the complete fertiliser treatment received all essential nutrients and was largely independent of nutrient supplies from the soil. In each of the 'subtracted' treatments all nutrients were supplied except one and plants were therefore dependent on the soil for this nutrient. The extent to which the growth of Green Panic is limited when a nutrient is left out provides a measure of the adequacy or deficiency of that particular nutrient in the soil.

This technique enables rapid diagnosis of immediate nutrient deficiencies and also determination of those nutrients that would become limiting after a period of intensive cropping. The results obtained from the study, supported by soil chemistry data, provide a sound basis for the planning of fertiliser experiments in the field. It must be emphasised, however, that the results obtained from these glasshouse experiments cannot be extrapolated to such crops as bananas, maize, tomatoes, etc. grown under field conditions. Field experiments will be needed to establish the magnitude of crop response to those nutrients diagnosed as being limiting for plant growth.

The representative soils examined in this study are listed in front of this report. Yields of Green Panic are given for each soil (Tables 1-26) in grams of dry matter per pot and also as a percentage of the yield from the complete fertiliser treatment. A chemical analysis for each of the soils is given in Part 2 of this report.

The technical assistance of H.M. Watts and F.W. Taylor in this study is acknowledged.

Table 2 Longomapu clay loam
TV 2/1, 2/2

	Yield of Green Panic				
Treatment	Topsoil 0-20 cm		Subsoil 20-45 cm		
	Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)	
Complete fertiliser	10.0	100	3.6	100	
" minus nitrogen	2.1	21	0.4	11	
" phosphorus	0.1	1	0.1	3	
" potassium	11.0	110	3.6	100	
" sulphur	8.2	82	3.6	100	
" trace elements.	10.7	107	3.4	94	

^{*} Yield of dry matter from 4 harvests (grams/pot)

⁺ Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 4 Pangaimotu clay loam SB 9166

	Yield of Green Panic				
Treatment	Topsoil 0-26 cm		Subsoil 26-47 cm		
	Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)	
Complete fertiliser	4.5	100	1.8	100	
" minus nitrogen	0.8	18	0.2	11	
" phosphorus	0.2	4	0.2	11	
" potassium	4.1	91	1.0	56	
" sulphur	2.8	62	1.2	67	
" trace elements	4.6	102	1.1	61	

^{*} Yield of dry matter from 4 harvests (grams/pot)

⁺ Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 5 Tu'anekevale clay loam
TV 3/1, 3/2

Topsoil	Subs	
	20-4	soil 0 cm
Yield+	Yield* (grams)	Yield+ (percent)
100	4.1	100
19	0.3	7
1	0.1	2
81	3.9	95
70.	4.3	105
88	5.2	127
	100 19 1 81 70	(percent) (grams) 100 4.1 19 0.3 1 0.1 81 3.9 70 4.3

- * Yield of dry matter from 4 harvests (grams/pot)
- + Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 6 Felemea clay SB 9179

Treatment		Yield of Green Panic				
		Topsoil 0-35 cm		Subsoil 35-65 cm		
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)	
W 1		,		2		·
Complete fertilise	er		12.7	100	13.0	100
11	minus	nitrogen	1.5	12	0.1	1
11	11	phosphorus	1.0	8	0.4	3
11	fi	potassium	14.1	111	9.2	71
* H	. 11	sulphur	3.4	27	4.0	31
11	11	trace elements	n.d.	n.d.	13.6	105

- * Yield of dry matter from 4 harvests (grams/pot)
- + Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment
- n.d. Not determined

Table 7 Foa clay (Foa) SB 9175

			Yield of Green Panic			
Treatment		Topsoil 0-30 cm		Subsoil 30-65 cm		
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)	
Complete fertilise	er		11.9	100	10.7	100
11	minus	nitrogen	0.9	8	0.2	2
11	. 11	phosphorus	0.3	3	0.4	4
11	11	potassium	10.8	91	6.3	59
. 11	11,	sulphur	2.0	17	3.0	28
11	11	trace elements	12.2	103	10.7	100

^{*} Yield of dry matter from 4 harvests (grams/pot)

⁺ Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 8 Foa clay (Ha'ano) SB 9186

		Yield of Green Panic				
Treatment		Topsoil 0-29 cm		Subsoil 29-51 cm		
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)	
			· · · · · · · · · · · · · · · · · · ·			
Complete fertiliser		11.5	100	8.5	100	
" minus	nitrogen	1.8	16	0.1	1	
n . n	phosphorus	0.2	2	0.2	2	
ti ii]	potassium	10.0	87	1.3	15	
n . n	sulphur	2.5	22	2.8	33	
17 11	trace elements	11.5	100	8.2	96	

- * Yield of dry matter from 4 harvests (grams/pot)
- + Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 9 Ha'afeva silt loam

	Yield of Green Panic				
Treatment	Topsoil 0-50 cm		Subs 50-80		
	Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)	
Complete fertiliser	12.2	100	9.8	100	
" minus nitrogen	0.2	2	0.1	1	
" phosphorus	0.2	2	0.2	2	
" potassium	6.8	56	3.6	37	
" sulphur	1.0	8	0.6	6	
" trace elements	10.9	89	7.5	77	

- * Yield of dry matter from 4 harvests (grams/pot)
- + Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 10 Ha'apai clay (Nomuka) SB 9172

	Yield of Green Panic			
Treatment	Topsoi1 0-30 cm		Subsoil 30-60 cm	
	Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)
Complete fertiliser	9.6	100	8.2	100
" minus nitrogen	0.2	2	0.1	1
" phosphorus	0.4	4	0.2	2
" potassium	6.0	63	1.4	17
" sulphur	1.4	15	1.8	22
" trace elements	9.4	98	9.0	110

- * Yield of dry matter from 4 harvests (grams/pot)
- + Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 11 Ha'apai clay (Lifuka) SB 9181

a special section of	t	Yield of Green Panic				
Treatment		Topsoil 0-30 cm		soil 0 cm		
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Yield* (grams		Yield* (grams)	Yield+ (percent)		
Complete fertiliser	12.9	100	8.1	100		
" minus nitroge	en 1.0	8	0.2	2		
ıı phospho	orus 0.7	5	0.4	5		
" " potassi	.um 8.3	64	1.4	17		
". sulphur	3.0	23	4.3	5,3		
" trace e	elements 13.0	101	6.2	77		

- * Yield of dry matter from 4 harvests (grams/pot)
- + Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 12 Lifuka clay

TH 1/1, 1/2

Treatment		Yield of Green Panic					
		Topsoil 0-20 cm		Subsoil 20-40 cm			
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)		
*	2						
Complete fertiliser	as d	8.6	100	7.7	100		
" minus ni	itrogen	1.2	14	0.3	4		
'' pl	hosphorus	0.1	1	0.1	1		
" po	otassium	8.4	98	4.4	57		
ıı ıı sı	ulphur	1.6	19	0.7	9.		
" " t:	race elements	9.3	108	8.2	106		
	2	2 i	99.5				

^{*} Yield of dry matter from 4 harvests (grams/pot)

⁺ Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 13 Mango clay

SB 9182

			Yield of Green Panic				
Treatment		Topsoil 0-15 cm		Subs	soil ^x		
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)		
Complete fertiliser		10.4	100				
- 11	minus nitrogen	0.2	2				
11	" phosphorus	1.1	11				
Ħ	" potassium	9.3	89	nin 1			
11	" sulphur	2.3	22		w.		
11	" trace elements	8.3	80				

- * Yield of dry matter from 4 harvests (grams/pot)
- Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment
- x No sample taken

Table 14 Nomuka clay SB 9171

	Yield of Green Panic					
Treatment	Topsoil 0-30 cm		Subs 30-6	oil 0 cm		
Trito Inscat	Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)		
Complete fertiliser	11.2	100	8.7	100		
" minus nitrogen	0.6	5	0.1	1		
" phosphorus	0.3	3	0.1	1		
" potassium	8.4	75	0.8	9		
" sulphur	2.2	20	5.7	66		
" trace elements	11.7	104	8.4	97		

^{*} Yield of dry matter from 4 harvests (grams/pot)

⁺ Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 15 Uiha clay loam SB 9177

		Yield of Green Panic					
Treatment		Tops 0-30	soil cm	Subse 30 - 70			
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)		
Complete fertiliser		14.6	100	10.2	100		
" minus n	itrogen	1.0	7	0.1	1		
n p	hosphorus	0.3	2	0.2	2		
" " p	otassium	14.1	97	6.1	60		
· 11 11. S	ulphur	2.6	18	1.7	17 ×		
" " t	race elements.	13.3	91	11.9	117		

- * Yield of dry matter from 4 harvests (grams/pot)
- + Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 16 Uoleva sandy loam SB 9190

			Yield of Green Panic					
Treatment		Top 2-:	osoil 12 cm	Subs 20-4				
		Yield* (grams)	Yield+ (percent)	· Yield* (grams)	Yield+ (percent)			
		*		-,				
Complete fertilis		a - a g - tu	16.8	100	8.9	100		
91	minus	nitrogen	2.5	15	0.4	4		
11	11	phosphorus	14.8	88	1.7	19		
11	71	potassium	15.5	92	8.2	92		
*1	- 11	sulphur	3.3	20	1.5	17		
11	**	trace elements.	15.1	90	6.8	76		

^{*} Yield of dry matter from 4 harvests (grams/pot)

⁺ Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 17 Lapaha clay TT 2/1, 2/2

		Yield of Green Panic				
Treatment		Topsoil 0-20 cm		Subs 24-5	oil 0 cm	
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)	
					en e	
Complete fertiliser		8.3	100	4.4	100	
97	minus nitrogen	0.6	7	0.3	7	
. 11	" phosphorus	3.9	47	0.1	2	
11	" potassium	6.4	77	3.2	73	
	" sulphur	1.4	17	4.2	95	
er	" trace elements	8.6	104	4.0	91	

- * Yield of dry matter from 4 harvests (grams/pot)
- + Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 19 Nuku'alofa sandy loam TT 3/1, 3/2

		Yield of Green Panic					
Treatment			Topsoil 0-30 cm		oil 60 cm		
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)		
· · · · · · · · · · · · · · · · · · ·							
Complete fertili	ser	7.9	100	8.1	100		
ęŧ	minus nitrogen	0.7	9	0.3	4		
71	" phosphorus	0.7	9	0.1	1		
ft	" potassium	6.1	77	5.0	62		
. 11	" sulphur	1.1	14	0.7	9		
***	" trace elements	5.6 [‡]	71 [‡]	2.5	31 [‡]		

^{*} Yield of dry matter from 4 harvests (grams/pot)

Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

[#] Minus zinc and molybdenum only

Table 20 Vaini clay

8	b	Yield of Green Panic					
Treatment		Topsoil 0-22 cm		Subsoil 40-60 cm			
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)		
Complete fertiliser		6.2	100	3.8	100		
11	minus nitrogen	0.4	· 6	0.2	5		
17	" phosphorus	2.5	40	0.2	5		
Ft	" potassium	6.7	108	4.1	108		
	" sulphur	1.0	16	2.2	5,8		
- 11	" trace elements	6.1	98	4.8	126		

- * Yield of dry matter from 4 harvests (grams/pot)
- Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 24 Hango silty clay (H54) SB 9144

		Yield of Green Panic					
Treatment		Top: 0-1	soil 2 cm	Subs 20-40			
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)		
			3				
Complete fertiliser	·	9.1	100	2.7	100		
" minus nîtro	ogen	1.2	13	0.3	11		
ıı " phos	phorus	1.1	12	0.2	7		
" pota	ssium	8.7	96	1.2	44		
u sulp	hur	3.4	37	2.6	96		
" " trac	e elements	9.2	101	3.0	111		

^{*} lield of dry matter from 4 harvests (grams/pot)

Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 25 Hango silty clay (H8)
SB 9143

			Yield of Green Panic					
Treatment		Topsoil 0-20 cm		Subsoil 20-40 cm				
		Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)			
Complete fertiliser		7	14.5	100	2.3	100		
11	minus	nitrogen	1.7	12	0.2	9		
17	, н.,	phosphorus	10.7	74	0.4	17		
11	11	potassium	13.7	94	1.6	70		
- 11	11.	sulphur	3.7	26	2.0	87		
tr.	11 51 80	trace elements	14.5	100	2.9	126		
						74		

- * Yield of dry matter from 4 harvests (grams/pot)
- Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

Table 26 Houma silty clay loam SB 9146

				Yield of Green Panic					
Treatment			osoil O cm	Subsoil 20-40cm					
			Yield* (grams)	Yield+ (percent)	Yield* (grams)	Yield+ (percent)			
		×							
Complete fertilise	r	81 6	10.1	100	3.4	100			
97	minus	nitrogen	1.0	10	0.3	9			
11	11	phosphorus	≎0.4	4	0.2	6			
11	11	potassium	10.5	104	3.4	100			
11	- 11	sulphur	4.3	43	2.8	82			
11	11	trace elements	10.8	107	3.5	103			

- * Yield of dry matter from 4 harvests (grams/pot)
- Yield of dry matter from 4 harvests expressed as a percentage of the yield of the complete fertiliser treatment

PART 2. CHEMICAL AND PARTICLE SIZE ANALYSES
OF SOME REPRESENTATIVE SOILS OF
TONGA

INTRODUCTION

This section of the report contains results of chemical and particle size analyses of samples collected during the soil survey of the Kingdom of Tonga in 1974 and 1975. In addition, it contains a table of chemical ratings used for New Zealand soils. These ratings are a guide only, and do not necessarily indicate that deficiencies will occur.

The analytical data were obtained by the methods described in Blakemore et al. (1972), "Soil Bureau Laboratory Methods" (New Zealand Soil Bureau Scientific Report 10A). Much fuller background information on the methods is contained in "Methods of Chemical Analysis for Soil Survey Samples" by A.J. Metson (Soil Bureau Bulletin 12, 1956).

NOTES ON METHODS AND INTERPRETATION

The following brief notes on the methods used and the significance of the results might be helpful.

рH

pH is measured with a glass electrode in a suspension of soil, with a soil to water ratio of 1: 2.5. The pH of a soil is, in effect, a measure of the acid groups associated with clay and humus in the soil, and the extent to which they are neutralised by bases. Under conditions of strong leaching the soil becomes more acid (pH decreases) as the content of bases decreases. Conversely, in weakly leached soils and in soils derived from calcareous parent materials, the pH will be near neutral or even alkaline because of an excess of bases. pH is important in controlling the availability of nutrients to plants, and the optimum range for most plants is pH 6 to pH 7. This range also favours maximum soil biological activity, and thus maximum breakdown of organic matter.

Organic matter

Organic carbon (% C), total nitrogen (% N), and carbon/nitrogen ratio (C/N) are used to characterise the organic matter present.

Carbon is measured by a combustion method and nitrogen by a semimicro Kjeldahl procedure. Both are expressed as a percentage; i.e. grams of carbon or nitrogen per 100 grams of oven-dry soil.

Soil organic matter is important as a reserve of nutrients, in holding soil moisture, and in the maintenance of soil structure. The quantity of organic matter present in a soil depends on the balance between the addition of raw organic matter, as plant or animal tissue, and its breakdown or mineralisation by soil organisms.

The state of decomposition is indicated by the C/N ratio. Raw (not well decomposed) organic matter has a ratio greater than 15 while well decomposed humus has a ratio of about 10 to 12.

Phosphorus

- (a) Truog-phosphorus. This value is determined by shaking a sample of soil for 30 minutes with Truog reagent (0.001 \underline{M} H₂SO₄ at pH 3). It gives a measure of the phosphorus that is immediately available to plants, except for soils which contain apatite (a calcium phosphate mineral which is readily soluble in Truog reagent but not readily available to plants).
- (b) $0.5\underline{M}$ H₂SO₄ soluble phosphorus. This value gives an approximate measure of the amount of non-fixed inorganic phosphorus present in the soil, and so provides a measure of the reserve of phosphorus. It also gives an indication of the state of weathering in the soil as the proportion of inorganic phosphorus soluble in $0.5\,\underline{M}$ H₂SO₄ decreases with increasing weathering.
- (c) Bondorff phosphorus. This value is determined by shaking the soil for 16 hours with $0.1\,\underline{\text{M}}$ H₂SO₄. It has been found that this extraction procedure gives results which have a higher correlation with plant yield (in pot experiments) than have most procedures in common use, e.g. Truog (McGaveston & Widdowson, unpublished data).

Truog-soluble, 0.5 $\underline{\text{M}}$ H₂SO₄-soluble, and Bondorff phosphorus are expressed as mg % P; i.e. milligrams (thousandths of a gram) of phosphorus per 100 grams of oven-dry soil.

Phosphate Retention (P ret. %)

This is an empirical measure of the ability of the soil to remove phosphate rapidly from solution, a process considered to be a precursor to the much slower process of phosphate fixation which renders phosphorus unavailable to plants (Blakemore et al. 1972). In acid soils (pH less than 6.5) phosphate is retained by amorphous compounds of iron and aluminium while in soils with pH greater than 6.5 the added phosphate can be retained by calcium.

The phosphate retention value gives an indication of the probable response of the soil to phosphatic fertilisers. A soil with high phosphate retention would be expected to give less response to the same amount of fertiliser than would a soil with low phosphate retention. Results are expressed as the percentage of added phosphate which is retained by the soil.

Cation Exchange

Cation exchange is a soil property related to the net negative charges on the surfaces of mineral and organic particles in the soil. These negative charges are balanced by positively charged cations which are exchangeable with other cations from the soil solution or from plant roots.

The properties which are related to cation exchange and which are measured in the analysis include cation-exchange capacity (CEC), total exchangeable bases (TEB), percentage base saturation (% BS) and exchangeable cations - Ca (calcium), Na (sodium), Mg (magnesium), and K (potassium). The exchangeable cations are measured after they have been replaced from the soil by neutral, molar ammonium acetate. CEC is measured by subsequent determination of the ammonium ions held by the soil.

CEC provides a measure of the number of cation-exchange sites available on soil particles. As cation exchange is essentially a surface reaction, it is a function mainly of the amount and type of small particle-size fractions present; i.e. clay and organic matter.

 Σ cations (total cations) is the sum of all principal exchangeable cations (except hydrogen and aluminium) present in the soil.

% BS , calculated as $\frac{\Sigma \text{ cations}}{\text{CEC}} \times \frac{100}{1}$, provides a measure of the state of leaching of the soil, and is a useful indicator of fertility in that it gives a measure of the overall fraction of exchangeable cations present which are available to plants.

Individual cations. Exchangeable calcium, sodium, magnesium and potassium values represent the amounts of these elements present in exchangeable form, and this is considered to be the form which is immediately available to plants.

CEC, Σ cations, and individual cation levels are expressed as m.e.%; i.e. thousandths of an equivalent per 100 grams of oven-dry soil.

Mg, value (Reserve magnesium)

This value represents the acid-soluble 'reserve' magnesium content of the soil and is calculated by determining the amount of magnesium soluble in boiling $1\,\underline{\text{M}}$ hydrochloric acid and subtracting the exchangeable magnesium value. Results are expressed as m.e.%. A level of 30 m.e.% has been tentatively suggested as being sufficient for New Zealand pastoral conditions.

K_c (Reserve potassium)

Reserve potassium is a value proposed by A.J. Metson in 1956 to represent the long-term potassium-supplying power of the soil. The K_{C} value is obtained by successive extractions with boiling, $1\,\underline{\text{M}}$ nitric acid and represents the nearly constant rate of release of potassium from the lattices of clay minerals (particularly illite) in the soil. Results for K_{C} are expressed as m.e.%. A value of 0.3 m.e.% is taken as the boundary between adequate and inadequate reserves of potassium under New Zealand pastoral conditions. Results for K_{C} are expressed as m.e.%.

Adsorbed Sulphur (Ads.S)

This is sulphate which is retained by the soil and which, while not soluble in water, is replaceable by other chemicals. Measurements are expressed as p.p.m. S; i.e. grams of sulphur per million grams of

oven-dry soil. Such sulphate is considered to be available to plants and, in pasture, less than 10 p.p.m. of adsorbed sulphur (as sulphate) in the soil is thought to lead to sulphur-deficiency. The adsorbed sulphur is held mainly by forms of aluminium which adsorb more efficiently under acid conditions. For this reason, acid soils usually have high contents of adsorbed sulphur. Unfortunately, this means that soils of high base status and otherwise high nutrient status are usually sulphur-deficient.

Particle-size Analyses

These were carried out using ultrasonic dispersion with sodium hexametaphosphate, followed by measurement by the "falling drop" technique. Particles less than 0.002 mm (< .002 mm) in size are referred to as clay; those between 0.002 and 0.02 mm as silt; those between 0.02 and 0.2 mm as $fine\ sand$; those between 0.2 and 2 mm as $coarse\ sand$ and those greater than 2 mm (>2 mm) as stones.

Results are expressed as %; i.e. grams per 100 grams of oven-dry soil.

RATINGS FOR CHEMICAL PROPERTIES

The following ratings of chemical properties are used by Soil Bureau for New Zealand soils:

		Phosphoru	ıs	P retention	Tamm c	xalate	Adsorbed SO ₄
RATING	Truog (mg %)	0.5M H ₂ SO ₄ (mg %)	Bondorff (0.1M H ₂ SO ₄) (mg %)	(%)	Al (%)	. Fe (%)	(ppm S)
Very high	> 5	> 40,	> 10	90-100	> 3.0	> 2.0	> 150
High	3-5	20-40	5-10	60-90	1.0-3.0	1.0-2.0	50-150
Medium	2-3	10-20	2-5	30-60	0.5-1.0	0.5-1.0	15-50
Low	1-2	5-10	1-2	10-30	0.2-0.5	0.2-0.5	5-15
Very low	< 1	< 5	< 1	0-10	< 0.2	< 0.2	< 5

RATING	Organic C (%)	Total N (%)	C/N	pH (1:2.5 soil:water)
Very high	> 20	> 1.0	> 24) > 9.0 (extremely alkaline)) 8.4-9.0 (strongly ")) 7.6-8.3 (moderately ")
High	10-20	0.6-1.0	16-24) 7.1-7.5 (slightly ")) 6.6-7.0 (near neutral)
Medium	4-10	0.3-0.6	12-16) 6.0-6.5 (slightly acid)) 5.3-5.9 (moderately ")
Low	2-4	0.1-0.3	10-12	4.5-5.2 (strongly ")
Very low	< 2	< 0.1	< 10	< 4.5 (extremely ")

			Catio	n-Exchai	nge Pro	perties		Res	erve
RATING	CEC (me.%)	Σ Cat (me.%)	BS (%)	Ca (me.%)	Mg (me.%)	K (me.%)	Na (me.%)	Mg r (me.%)	K _C (me.%)
Very high	> 40	> 25	80-100	> 20	> 6	> 1.2	> 2	> 30	> 0.50
High	25-40	15-25	60-80	10-20	3-6	0.8-1.2	0.7-2	15-30	0.35-0.50
Medium	12-25	7-15	40-60	5-10	1-3	0.5-0.8	0.3-0.7	7-15	0.20-0.35
Low	6-12	3-7	20-40	2-5	0.3-1	0.3-0.5	0.1-0.3	3-7	0.10-0.20
Very low	< 6	< 3	< 20	< 2	< 0.3	< 0.3	< 0.1	< 3	< 0.10

	Ī .		1:2.5)		Cat	ion E	xchang	je C	apacit	y (me.	%)	Re	serve (me.%)
Depth (cm)	Horizo	n H ₂ 0	CaC1	2 CEC	Σ Cat	: %B	S	Ca	Na	M	lg .	K Mg	r K _c
0-20	A ₁	6.5	5.6	37.2	27.8	75	18	3.3	0.26	8.	4 0.8	31 7.6	0.12
30-40	B ₁	7.1	6.0	30.7	21.1	69	11	9	1.26	6.	3 1.5	59	0.04
50-70	B ₂	6.4	5.6	27.8	19.8	71	9	.6	3.1	6.	9 0.2	22 5.3	3
Depth	Orga Matt			Phospho	rus (m	lg.%)	<u> </u>	Pa	rticle	Size	Analysi	s	Sulphur (ppm)
(cm)	C%	N&	0.5M H ₂ SO ₄	Bondorf:	Truog	p Ret.%	<0.00 nun		0.002- 0.02	0.02-	0.2-	> 2.0 mm	
0-20	4.0	0.30	3	0.7		70			a.		•		5
30-40	0.7	0.09	2	0.1		81							49
50-70	0.4	0.04	2	0.3		74							248
			340										
			48								_		
	- 1							\perp				<u> </u>	

^{*}Results of single analysis.

Analysts: M. Cullinane, D.McGaveston

Table 2a' Longomapu clay loam

TV 2/1, 2/2

		pH(1:	2.5)	C	Cation	Excha	nge Cap	acity (me%)		Re	eserve(me%)
Depth (cm)	Horizon	H ₂ 0	CaCl ₂	CEC	Σ Cat	* B	S Ca	Na	Mg	K	Mg	: K	c
0-20 20-45		6.0 5.9		38.5 27.0	28.0	i					8 3.	1	20 12
	Orgai	nic.	Dh	osphoru		. .		article	Size A	nalysis	96	Sulp	
Depth (cm)	Matte	er N %	Total	O 5M	mxuoa	D	<0.002 mm		0.02-		>2.0 mm	Ads.	(mag
0-20		0.41		9	0.9						*	42	
20-45		0.14	1	8	0.6		3	c.				330	

Analysts: E.J. Gibson, D. McGaveston

		pH(1	:2.5)	T			change	Capacit	y (me.			serve (me.%)
Depth (cm)	Horizon		CaCl.	CEC	Σ Cat	%B	G Ca	Na Na	. М	g k	(Mg	c K
0-30	A _{1p1}	6.0	5.3	26.9	19.8	74	14.3	0.22	4.	4 0.8	33 3.4	0.07
30-55	A _{1p2}	6.4	5.5	22.2	13.2	59	9.7	0.37	3.	0 0.1	1	0.06
65-75	B ₂₁	6.4	5.6	23.2	15.4	66	10.7	7 1.80	2.	79 0.0	7 3.4	
82-93	B ₂₂	6.3	5.5	22.1	14.1	64	9.8	3 1.94	2.	36 0.0)4	
98-112	B ₃	6.2	5.5	21.7	12.9	59	8.8	2.00	2.	02 0.0)5	
	3									1		
	ra i											
1		L		\bot		<u> </u>	ш		;		<u> </u>	
Depth	Organ Matte			Phospho	rus (m	g.%)	I	Particle	Size	Analysis	5	Sulphur* (ppm)
(cm)	C%	N%	0.5M H ₂ SO ₄	Bondorfí	1 1	P Ret.%	<0.002 mm	0.002-	0.02-	0.2-	> 2.0 mm	Ads.
0-30	3.4	0.31	15	4		62	74	22	3	1	0	0
30-55		0.13	15	. 5		68	76	20	4	0	0	23
65-75		0.05	27	11		71	83	14	3	0	0	118
82-93		0.03	37	14		72	82	13	5	0	0	185
98-112		0.04	38	15		69	86	12	2	0	0	188
150 111	"		142									
							a a	= :-				
										-		
											-	
	1				,							

^{*}Results of single analysis.

Analysts: M. Cullinane, D. McGaveston, J. McCarten

Table 4a Pangaimotu clay loam

SB 9166 A-E

			:2.5)					Ca	apacity	(me.	€)		Res	erve	e (me.%)
Depth (cm)	Horizon	H ₂ O	CaCl	CEC	Σ Cat	*BS	S C	a	Na	Me	3	K	Mgr		Kc
0-21	A ₁	5.7	5.2	26.5	16.3	62	11	.9	0.36	3.8	3 (0.22	3.	4	0.06
29-41	B ₁	6.1	5.6	22.5	13.5	60	9	.7	1.27	2.	25 0	0.26			0.03
49-70	B ₂₁	6.5	5.7	23.0	14.7	64	10	.2	1.91	2.	54 0	0.06	3.	4	
77-88	B ₂₂	6.3	5.6	22.2	14.0	63	9	.4	2.01	2.	44 0	0.10			
96-120	B ₃	6.1	5.4	19.9	12.3	62	8	.0	2.04	2.	18 (0.04			
Depth	Organ Matte	1		Phospho	rus (mo	J.%)		Par	rticle :	Size	Analys	sis			ulphur (ppm).
(cm)	C%		0.5M H ₂ SO ₄	Bondorf	1 -1	P Ret.%	<0.002 πm		0.002-	0.02- 0.2	0.: 2.0		2.0 mm		Ads.
0-21	3.6	0.34	7	2		66	75		17	6	2		0		3
29-41	0.7	0.09	15	5		75	90		8	2	0		0		45
49-70	0.3	0.05	31	11		74	82		14	4	0		0	1	.14
77-88	0.4	0.04	32	13		72	89		8	3	0		0	1	.45
96-120	0.3	0.03	29	11		72	89		8	3	0		0	2	278
			,	*										12	
	4														

Analysts: M. Cullinane, D. McGaveston, J. McCarten

¥		рH(1:	2.5)		Cation	Exchai	nge Capa	acity (me%)		Re	eserve(me%)
Depth (cm)	Horizon	н ₂ 0	CaCl ₂	CEC	Σ Cat	. 8 B	G Ca	Na	Mg	K	Mg	K	C
0-20 20-40		5.9 6.4		27.8	18.9	68 69				0.4			09 05
												Sulp	hur
Depth	Organ	er	Pho	sphoru	ıs (mg%	r			Size A		>2.0	(E	pm)
(cm)	C	N %	Total	0.5M H ₂ SO ₄ -	Truog	P Ret%	<0.002 mm	0.002-	0.02-	2.0	mm	Ads.	<u> </u>
0-20		0.38	· ·	3	1							30	
20-40		0.16		.2	1 .					1.07		53	
		x =	ι .										
	1	a d											

Analysts: E.J. Gibson, D. McGaveston

Table 6a Felemea clay

SB 9179 A-D

			:2.5)		Cat	ion Ex			Capacit	y (m	e.%)			Res	erve	e (me.%)
Depth (cm)	Horizon	H ₂ 0	CaCl.	CEC	Σ Cat	%BS	5	Ca	Na		Mg	K	5	Mgr		Kc
0-10	Λ.,	6.7	6.0	120	27.6	+		00.0		+		<u> </u>			-	
	Aןן	1	1	1	37.6	88	- 1	22.8		1	2.5	1.5		16		0.41
15-35	A12	7.1	5.8		35.4	8!	- 1	20.8		1	2.7	0.7	71			
40-70	B ₂ g	7.0	6.0	1 1	57.5	90	5	34	3.9	1	8.9	0.6	7	16		0.35
75-95	C _{fec}	7.2	6.1	43.0	38.8	90	0	23.1	4.5	1	0.9	0.3	30			
				•												
										-			-	,		
										-			- 1			
		. 1				1	1				٧.			·		
Depth	Organ Matte			Phospho	rus (m	g.%)		Pa	article	Siz	e Ana	lysis	5			ılphur* (ppm)
(cm)	C%		0.5M	Bondorff	Truog	P	<0.	.002	0.002-	0.0	2-	0.2-	>	2.0		Ads.
			H ₂ SO ₄		1 -1	Ret.%		mm	0.02	0.		2.0		mm		nas.
			1					1						ĺ		
0-10	3.5	0.35	8	4		29								Ì		1
15-35	0.8	0.10	6	2		46		1								0
40-70		0.07	10	2		49		1								3
75-95		0.03	5	2		57										4
75 55	J. L	0.03	7	۲.		37		l								4
								1								-
								1								-
								İ								
	- d															

*Results of single analysis. Analysts: K. Giddens, D. McGaveston

Table 7a Foa clay (Foa)

SB 9175 A-E

T	a 100 (THE RESERVE OF THE PARTY OF THE	:2.5)	T	Cati	on Ex	change (Capacity	(me.%	7.	Rese	erve (me.%
Depth (cm)	Horizon		CaCl ₂	CEC	Σ Cat	%BS	Ca		Mg	K	Mgr	KC
0-10	A11	7.1	6.5	56.4	55.5	98	38	0.42	15.0	2.1	0 16	0.17
15-30	A ₁₂	7.2	6.3	42.6	35.8	84	23.2	0.55	10.9	9 1.1	1	
45-70	B _{2cy}	7.4	6.3	49.9	39.1	78	24.0	2.99	11.5	9 0.1	16 16	0.06
85-105	В3	7.2	6.5	46.5	43.6	94	28.4	3.4	11.	1	1	
110-130	С	7.1	5.9	47.6	42.5	89	31	3.7	7.	7 0.	12	
										-		
Depth	Orga			Phospho	rus (m	g.%)	F	article	Size P	malysis		Sulphur'
(cm)	C%	N%	0.5M H ₂ SO ₄	Bondorfi		P Ret.%	<0.002 mm	0.002- 0.02	0.02-	0.2-	> 2.0 mm	Ads.
0-10	4.8	0.37	20	7		52			1			1
15-30	1.1	0.14	14	3		60						₹1
45-70	0.4	0.06	9	2		67						3
85-105	1 1	0.04	10	1		72				- 8	-	5
110-130	1 1	0.04	9	1		70						1
		**		(40)								
												The Last

^{*}Results of single analysis. Analysts: K. Giddens, D. McGaveston.

Table 8a Foa clay (Ha'ano)

SB	918	6 A-I	

			:2.5)				change				The second name of		F	eser	ve (me.%
Depth (cm)	Horizon	H ₂ 0	CaCl ₂	CEC	Σ Cat	%BS	Ca	a .	Na	M	g .	K	M	g r	Kc
0-29	A ₁₁	6.2	5.5	43.4	36.9	85	24.	8	0.86	11	.0	0.2	26	14	0.19
29-51	A ₁₂	7.1	5.8	43.3	38.6	89	26.	2	1.19	11	.0	0.2	22		0.19
51-65	B ₁	7.2	5.9	49.9	40.3	81	26.	8	2.64	10	.7	0.1	.3	14	
65-116	B ₂ cy	7.2	6.0	53.0	46.3	87	32.	9	2.83	10	.5	0.1	.0		
116-145	c	7.2	5.9	46.0	38.5	84	29.	5	1.28	7	.6	0.1	10		
147-160	IIC	7.0	6.0	47.3	44.0	93	34		2.17	7	.7	0.1	.5		
Depth	Organ Matte			Phospho	rus (m	g.%)		Part	icle	Size	Analy	sis			Sulphur*
(cm)	C%	N%	0.5M H ₂ SO ₄	Bondorfí		P Ret.%	<0.002 mm	0.		0.02-		2-	> 2.	- 1	Ads.
0-29	2.0	0.18	9	1		68					•			-	1
29-51	1.1	0.12	8	1		65			.						0
51-65	0.4	0.07	8	0.9		77			1						1
65-116	0.2	0.03	7	0.9		78									· 1
116-145	0.1	0.02	6	0.8		67			ĺ						3
147-160	0.3	0.04	3	0.3	*	55									16
												İ			
									-						
		-													

^{*}Results of single analysis.

Analysts: M. Cullinane, D. McGaveston

1		pH(1	:2.5)				char	nge Ca	apacity	(me.		Res	erve (me.
Depth (cm)	Horizon	H ₂ 0	CaCl ₂	CEC	Σ Cat	%BS	3	Ca	Na	Mo	g K	Mgr	K _C
0-15	A ₁	7.2	6.4	31.9	30.7	96		19.2	0.62	10.	4 0.50	13	0.16
20-40	A ₁₂	7.4	6.4	27.1	27.4	(100) -	18.1	0.66	8.	4 0.20		-
50-65	A ₃	7.7	6.3	45.7	43.6	95	-	29.9	2.83	10.	7 0.16	5	
65-80	(B)	7.7	6.4	41.5	39.7	96		27.2	3.2	9.	2 0.14	12	0.09
85-100	С	7.6	6.3	48.3	46.1	96		32	3.8	10.	2 0.11	L	
	ř												
Depth	Organ Matte		1	Phospho:	rus (m	g.%)		Pai	rticle	Size	Analysis		Sulphur
(cm)	C%	N%	0.5M H ₂ SO ₄	Bondorff		P Ret.%	0. ó> m		0.002-	0.02-	0.2-	> 2.0 mm	Ads.
0-15	1.2	0.11	7	2		51					•		1
20-40	0.8	0.05	5	2		41							1
50-65	0.3	0.04	5	0.9		55							1
65-80	0.2	0.03	4	0.8		54							1
85-100	0.2	0.02	7	0.9		56							1
												ji i	

^{*} Results of single analysis.

																
			:2:5)						Capacit	-				Res	erve	
Depth (cm)	Horizon	H ₂ C	CaCl ₂	CEC	Σ Cat	%BS	5	Ca	Na		Mg		K	Mgr	:	K _C
0-5	A ₁₁	6.1	5.5	42.7	34.2	80		22.2	0.70		10.	8 0.	50	15		0.14
5-30	A ₁₂	6.9	5.7	39.7	35.5	89		23.6	0.88		10.	8 0.	19	14		0.13
36-70	B _{2cy}	7.1	5.9	34.0	27.5	81		16.4	3.2		7.	8 0.	10			
80-100	B _{3cy}	6.9	5.7	34.4	28.8	84		19.3	3.2		6.	2 0.	80			
105-120	Ссу	6.9	5.8	36.6	31.5	86		22.5	3.2	.	5.	7 0.	80		1	
																4
		L		<u> </u>		ــــــــــــــــــــــــــــــــــــــ	1				÷			L		
Depth	Organ Matte	1	*************	Phospho	rus (m	g.%)		P	article	Si	ze A	malysi	.s			lphur ppm)
(cm)	C%	N%	0.5M H ₂ SO ₄	Bondorfi		P Ret.%	•	.002 mn	0.002- 0.02	,	02-	0.2-	>	2.0 mm		Ads.
0-5	2.9	0.27	10	2		66										1
5-30	1.8	0.16	8	1		63										1
36-70	0.7	0.07	3	0.6		63		Ì			1					13
80-100	0.4	0.04	3	0.4		65		0			İ					32
105-120	0.4	0.04	3	0.4		64										13
			-													
								.								
	1		<u> </u>													

^{*}Results of single analysis.

		pH(1:	2.5)		Cation	Excha	nge Cap	acity (mc%)		R	eserve ((me%)
Depth (cm)	Horizon	H ₂ 0	CaCl ₂	CEC	Σ Cat	9 B	S Ca	Na	Mg	: K	Mg	r	C
0-20		6.4		41:1	34.2	2 8	3 23.	1 0.	66 10.	0 0.	57 2	1 0	.34
20-40		7.2		36.4	33.5	5 9	2 22.	8 0.	83 9.	6 0.	25 2	3 0	.34
				* *									
24						. -	E .						
	Orga Matt		Pho	sphoru	ıs (mg%	s)	P	article	Size A	nalysis	%	Sulp (r	hur pm)
Depth (cm)	6 C .	N %	Total	0.5M H ₂ SO ₄	Truog	P Ret%	<0.002 mm	0.002-	0.02-	0.2- 2.0	>2.0 mm	Ads.	
0-20		0.23	<u></u>	11	0.5							4	
20-40		0.11		11	0.4					®.		3	
									i v i v				

Analysts: E.J. Gibson, D. McGaveston

46

						12.0	**						TOL N D
			1:2.5)		Cat	ion Ex	change					Res	erve (me.
Depth (cm)	Horizo	n H ₂ 0	CaCl ₂	CEC	Σ Cat	: %B\$	S Ca	a l	Ia	Mg	K	Mgr	. K _c
0-15	A ₁	7.0	5.9	91.0	90.8	10	0 58	3 1	.16	30.8	0.81	113	0.88
15-38	c ₁	7.3	5.9	92.9	91.7	9:	9 58	8 1	.73	31.5	0.50	136	
										;			
Depth	Orga Matt			Phospho	rus (m	ıg.%)]	Partic	e Size	analys	sis		* Sulphur (ppm)
(cm)	C%	N%	0.5M H ₂ SO ₄	Bondorf	Truog	P Ret.%	<0.002 mm	0.002	2- 0.0			2.0 mm	Ads.
0-15	2.9	0.22	7	3		41				.		1	10
15-38	0.4	0.03	4	1	2	43							1
							*						**
	s of sig			~~~	ļ,								

Analysts: A. Hall, V. Vortman, D. McGaveston

									1 5 6		- : O > :			I Danie		/ 0
,			:2.5)	GEO. T	Cat: Σ Cat	lon Ex		ange C Ca	apacit Na	-	Mg	K		Rese	erve	
Depth (cm)	Horizon	H ₂ O	CaCl ₂	CEC	Z Cat	**************************************	,	Ca	Na.		mg ———			Mgr		K _C
0-10	A ₁₁	6.5	5.8	54.2	48.1	89		31	0.88		15.3	0.	96	15.	.7	0.19
12-20	A ₁₂	6.9	5.8	49.8	40.6	82		28.5	1.28		10.5	0.	29			0.16
30-50	B ₁	7.1	5.9	50.4	43.0	85		30	2.78		10.1	0.	14	15.	.8	
60-80	B _{2cy}	7.1	5.8	51.0	43.9	86		29.4	3.4		11.0	0.	11			
90-110	C	7.0	5.8	45.9	38.3	83		25.8	4.4		8.0	0.	07			
				.					100		÷					
Depth	Organ Matte			Phospho	rus (m	g.%)		Pa	rticle	Siz	e Ana	lysis				ılphur (ppm)
(cm)	C%		0.5M H ₂ SO ₄	Bondorfi	1	P Ret.%	t		0.002- 0.02	0.0		0.2 - 2.0	>	2.0 mm		Ads.
0-10	4.1	0.35	12	3		64								l		2
12-20		0.19	77	2		66										1
30-50		0.07	7	1		77									200	1
60-80		0.04	5	0.9		78		1								27
90-110		0.03	7	0.8		69										27
														1		
								l								
	\				<u> </u>											

^{*}Results of single analysis.

Table	15a U	ina c	lay 1	oam	4						_	SB	917	77 A-E
		pH(1	:2.5)		Cati	on Exc	chan	ge Ca	pacity	(me.%)		Rese	rve	(me.%)
Depth (cm)	Horizon	H ₂ O	CaCl ₂	CEC	Σ Cat	%BS		Ca	Na	Mg	K	Mgr		K _c
0-10	Ајј	6.6	5.8	35.5	30.7	87		16.2	0.97	11.8	1.69	14		0.21
15-25	A ₁₃	7.1	6.0	33.9	29.7	88	-	16.1	1.19	11.4	0.97			
30-50	A ₃	7.3	6.2	36.3	33.7	93		20.6	1.78	10.9	0.39			
50-70	B ₂	7.5	6.3	44.9	41.6	93		25.0	4.8	11.6	0.24	16		0.09
87-107	С	7.5	6.4	44.3	42.3	96		26.4	4.2	11.6	0.12			
								l	,					
										V				
Depth	Organ Matte	1		Phosph	orus (mg	(88)		Par	ticle S	ize Ana	lysis			ılphur* (ppm)
(cm)	Ce	M2:	0.5M	Bondori	ff Truog	р	<0.0	02 0	0.002-0	.02-	0.2-	> 2.0		Ads.

Depth	Orga Matt			Phosphor	cus (m	g.%)	P	article	Size A	Analysis		Sulphur* (ppm)
(cm)	C%	N%	0.5M H ₂ SO ₄	Bondorff		P Ret.%	<0.002 mm	0.002- 0.02	0.02-	0.2- 2.0	> 2.0 mm	Ads.
0-10	2.7	0.23		3		61					in the second	1
15-25	1.4	0.12	11	2		54		-				1
30-50	0.9	0.09	11	2		59						se 1
50-70	0.5	0.06	11	2		67						1
87-107	0.2	0.03	11	2		60						1
												1

^{*} Results of single analysis. Analysts: A. Hall, V. Vortman, D. McGaveston.

Table 17a Lapaha clay

TT 2/1, 2/2

Damble	l	pH(1:		1	Cation	Excha	nge Cap	acity	(me%)		R	eserve	(me%)
Depth (cm)	Horizon	H ₂ 0	CaCl ₂	CEC	Σ Cat	: % B	S Ca	Nā	a Mg	K	Mg	r F	C
0-20		7.5		46.1	43.8	95	38	0.	33 4	.7 1.3	30 8.	7 ().14
24-50		7.3		32.3	22.9	71	17	.5 1.	56 3	.7 0.2	21 3.	4. (0.04
												-	a
	Orga:		Pho	sphoru	ıs (mg%	;)	P	article	Size A	nalysis	ક	Sulp (r	ohur
Depth (cm)	C %	P.T	Total	0.5M H ₂ SO ₄	Truog	P Ret%	<0.002 mm	0.002-	0.02-	0.2-	>2.0 mm	Ads.	Ĭ ,
0-20		0.23		44	1							7	
24-50		0.07		13	0.7							53	
			×	- A									

Analysts: E.J.Gibson, D. McGaveston

Table 18a Lapaha clay, easy rolling phase

SB 9168 A-E

Ap A12 B21 B22 IUA1	6.0 6.7 7.1 7.2 7.6	5.2 5.4 5.9 6.1 6.5	41.2 44.1 28.4 28.8 37.9	28.1 31.9 22.4 22.3 35.9	68 72 79 78 95		21.3 24.9 16.7	0.48 0.64 1.88 2.39	6.2	0.	.30 .14 .07	мд _х	.3	0.10 0.03
A ₁₂ B ₂₁ B ₂₂	6.7 7.1 7.2	5.4 5.9 6.1	44.1 28.4 28.8	31.9 22.4 22.3	72 79 78		24.9 16.7 16.9	0.64	6.2	0.	.14			
B ₂₁ B ₂₂	7.1 7.2	5.9	28.4	22.4	79 78		16.7 16.9	1.88	3.7	0.	.14			
B ₂₁ B ₂₂	7.2	6.1	28.8	22.3	78		16.7 16.9	1.88	3.7	0.	.07	5.	.7	0.03
B ₂₂	124	1-	1 1		1		16.9		1	1				0.00
- 1	7.6	6.5	37.9	35.9	95		21		1	1 -		1		
					1		31	1.76	2.9	6 0.	.14			
_	- 1		Phospho:	rus (m	g.%)		Pai	rticle	Size 2	Analysi	.s			ılphur*
28 1	1		Bondorff	1					0.02-	0.2- 2.0	>	2.0 mm		Ads.
3.0). 25	18	3		69									1
					73				1					1 .
1		9	2		69				1					22
1		13	3		70 🖘	(p)			1					40
- 1		16	3		70		. .			*				1.
					0		-						Gb.	
	3.0 (2'.4 (0.4 (0.4 (0.4 (0.4 (0.4 (0.4 (0.4 (0	3.0 0.25 2'.4 0.18 0.4 0.06 0.4 0.05	Matter N% 0.5M H ₂ SO ₄ 3.0 0.25 18 2.4 0.18 20 0.4 0.06 9 0.4 0.05 13	Matter Phospho 8 N% 0.5M Bondorff H ₂ SO ₄ 3.0 0.25 18 3 2.4 0.18 20 3 0.4 0.06 9 2 0.4 0.05 13 3	Matter Phosphorus (model) N% 0.5M Bondorff Truog H ₂ SO ₄ 3.0 0.25 18 3 2.4 0.18 20 3 0.4 0.06 9 2 0.4 0.05 13 3	Matter Phosphorus (mg.%) N% 0.5M Bondorff Truog P Ret.% 3.0 0.25 18 3 69 2'.4 0.18 20 3 73 0.4 0.06 9 2 69 0.4 0.05 13 3 70 0.9 0.11 16 3 70	Matter Phosphorus (mg.%) 8 N% 0.5M Bondorff Truog P Ret.% m 3.0 0.25 18 3 69 2'.4 0.18 20 3 73 0.4 0.06 9 2 69 0.4 0.05 13 3 70 0.9 0.11 16 3 70	Matter Phosphorus (mg.*) Page 18 N* 0.5M Bondorff Truog P	Matter Phosphorus (mg.*) Particle N* 0.5M Bondorff Truog P	Matter Phosphorus (mg.*) Particle Size 2 8 N% 0.5M Bondorff Truog Particle Size 2 3.0 0.25 18 3 69 2'.4 0.18 20 3 73 0.4 0.06 9 2 69 0.4 0.05 13 3 70 0.9 0.11 16 3 70	Matter Phosphorus (mg.*) Particle Size Analysi N* 0.5M Bondorff Truog P	Matter Phosphorus (mg.*) Particle Size Analysis N* 0.5M Bondorff Truog P <0.002 0.002- 0.02- 0.2- > Ret.* mm 0.02 0.02 0.02 0.02 > 3.0 0.25 18 3 69 2'.4 0.18 20 3 73 0.4 0.06 9 2 69 0.4 0.05 13 3 70 0.9 0.11 16 3 70	Matter Phosphorus (mg.*) Particle Size Analysis N* 0.5M Bondorff Truog P	Matter Phosphorus (mg.%) Particle Size Analysis 3.0

*Results of single analysis. Analysts: A. Hall, D. McGaveston.

Table 19	9a Nuku	'alofa	a sandy	/ loam								3/1, 3/1	<u>/2</u>
	I	рн(1:	2.5)	C	Cation E	xchai	nge Capa	acity (me%)		R	eserve(me%)
Depth (cm)	Horizon	H ₂ 0	CaCl ₂	CEC	Σ Cat	% B	Ca	Na	Mg	K	Mg	r K	c
0-30 40-60		7.9		30.7	- Free	1	1	1		.7 0.		22 0	0.06
	Orga	nic					[·	autials	Sign A	nalysis	9.	Sulp	
Depth (cm)	Matt		Total	T	ruog F		<0.002 mm		,		>2.0 mm	Ads.	(mag
0-30 40-60		0.32		116 15	5							9 20	

Analysts: E.J. Gibson, D. McGaveston

Table	20a V	aini c	lay									TT 1/1,	1/2
		pH(1:	2.5)	C	Cation	Excha:	nge Cap	acity (me%)		R	eserve (me%)
Depth (cm)	Horizon	H ₂ 0	CaCl ₂	CEC	Σ Cat	∮ B	S Ca	Na	Mg	K	Mg	r	C
0-30 35-65		6.3		45.9 44.4	34.2	75 76			1			1	.36 .21
	Orga — Matt		Pho	sphoru	ıs (mg%) .	P	article	Size A	nalysis	운	Sulp	hur pm)
Depth (cm)	C	N %	Total	0.5M H ₂ SO ₄	Truog	P Ret%	<0.002 mm	0.002-	0.02-	0.2-	>2.0 mm	Ads.	
0-30		0.26		77	1							2	
35-65		0.12		38	0.7							9	

Analysts: E.J. Gibson, D. McGaveston

Table 21a Vaini shallow clay

SB 9167 A-H

			TOW CI	•										
			:2.5)				-	-	Capacity	~			serve	(me.%
Depth (cm)	Horizon	H ₂ 0	CaCl ₂	CEC	Σ Cat	%BS	5	Ca	Na	Me		K Mg	r	K _C
0-18	Ap	6.5	5.8	51.3	43.1	84		33	0.48	9.4	0.	23 8.	9	0.10
22-30	A ₁₂	6.7	6.0	45.8	38.6	84		29.3	0.59	8.6	0.	14		
37-45	B ₂₁	7.1	6.2	41.5	33.7	81	1	23.0	1.77	8.8	0.	08 10.	0	0.05
62-80	B ₂₂	7.0	6.1	41.4	32.5	79		20.8	2.80	8.8	0.	07	.	
88-96	IUA	6.8	5.8	30.9	23.2	75		15.3	3.4	4.5	0.	04		
100-125	IUB ₂₁	6.6	5.5	26.6	19.1	72		12.8	3.6	2.7	1 0.	03		
138-151	IUB ₂₂	6.5	5.4	27.8	19.9	72		15.1	3.3	1.4	9 0.	04		
160-170	2UA ₁	7.2	6.4	38.4	34.2	89		30	2.36	1.7	3 0.	08		
	•				¥				1 .					
Depth	Organ Matte			Phospho	rus (m	g.%)		Pa	article	Size	Analysi	S		lphur ppm)
(cm)	C%		0.5M H ₂ SO ₄	Bondorfi	1 -1	P Ret.%	ł	.002 mm	0.002-	0.02-	0.2-	> 2.0 mm		Ads.
0-18	4.5	0.36	32	6		69	6	54	22	12	2	0		1
22-30	2.6	0.23	23	3		73	6	50	32	6	2	0		1
37-45	0.6	0.08	17	3		83	7	74	20	6	0	0		7
62-80	0.4	0.05	24	5		84	6	66	31	3	0	0		8
88-96	0.3	0.04	17	3		75	7	77	20	3	0	0	5	52
100-125	0.2	0.04	12	3		67	8	32	12	6	0	0	9	92
138-151	0.3	0.04	18	11		66	8	31	16	3	0	0	3	32
160-170				12		76		.				ĺ		7

^{*} Results of single analysis.

Analysts: A. Hall, D. McGaveston, J. McCarten

Table 22a Faitoka clay loam

SB 9145 A-D

-	T		pH(1	:2.5)		Cati	on Ex	change	Car	pacity	(me.3	5)	Re	serv	e (me.%)
	Depth (cm)	Horizon		CaCl ₂	CEC	Σ Cat	%BS			Na	Mo		Mg	r	Kc
ľ	0-20	A ₁	6.5	6.1	40.5	37.0	91	26.	4	0.25	8.	5 1.8	83 5	8.	0.05
	24-38	B ₁	6.4	5.6	26.3	19.3	73	11.	3	2.54	5.	4 0.0	09 3	8.8	0.04
	42-56	B ₂₁	6.1	5.3	28.1	19.3	69	12.	3	3.6	3.	3 0.0	05		
	60-80	B ₂₂	7.2	6.3	30.4	25.7	85	20.	1	3.3	2.	21 0.0	06		
	Depth	' Orgai Matte			Phospho	rus (m	g.%)		Par	ticle	Size	Analysi	s	S	Sulphur*
	(cm)	C%		0.5M H ₂ SO ₄	Bondorfi		P Ret.%	<0.002 mm		.002-	0.02-	0.2-	> 2.0 mm		Ads.
	0-20	4.8	0.44	6	1		59					•			0
	24-38	0.9	0.13	2	0.5		63							-	82
	42-56	0.6	0.09	2	0.5		78								102
	60-80	0.7	0.10	2	0.2		80								78
			2						The second secon						

^{*} Results of single analysis.

Analysts: K. Giddens, D. McGaveston

Table	23а На	'atua	clay	1021					2				SB	9148 A-	-E
1		pH(1	:2.5)		Cat:	ion E	xch	ange	Capacit	y (me.	%)		Res	erve (me	e.%
Depth (cm)	Horizon	H ₂ 0	CaCl ₂	CEC	Σ Cat	%BS	5	Ca	Na	M	g	K	Mgr	. K _c	!
0-16	Aı	6.9	6.5	37.5	38.8	(100	0).	28.9	0.4	1 8.	4 1	.09	8.	9 0.	.07
20-34	В	6.4	5.6	23.3	14.9	64	4	7.4	2.5	9 4.	8 C	.09	3.	9 0.	04
38-58	B ₂	5.8	5.0	22.4	14.9	67	7	6.4	4.2	4.	3 0	.06			
58-78	B ₂₂	5.8	4.9	21.8	13.5	62	2	5.5	3.9	4.	1 0	.04			
82-100	В3	5.8	4.9	21.7	13.5	62	2	5.8	4.1	3.	6 0	.04			
	×														
									20 T					1	
Depth	Organ Matte			Phospho	rus (m	g.%)		P	article	Size	Analysi	.s		Sulph mgg)	
(cm)	C%		0.5M H ₂ SO ₄	Bondorfi	1 1	P Ret.%	1	.002	0.002- 0.02	0.02-	0.2-	>	2.0 mm	Ads	
0.76	1.6								10	-,			0	0	
0-16	4.6	0.37		3		67	1	78	18	.2	2			110	
20-34	0.8	0.11	6	2		77		36	10	4	0	1	0		
38-58	0.6	0.06		4		76	1	94	4	2	0		0	327	
58-78	0.4	0.05		7		73		96	2	2	0	1	0	319	
82-100	0.4	0.04	21	10		75	9	95	3	2	0		0	308	

Analysts: K. Giddens, D. McGaveston, J. McCarten

Table 24a Hango silty clay (H54)

SE	2 9	14	4	$\Delta = 1$

		PH(1	:2.5)				change	Ca	pacity					Rese	rve	(me.%)
Depth (cm)	Horizon	H ₂ 0	CaCl ₂	CEC	Σ Cat	%BS	C	a 	Na	1	1g 	K		Mg r		K _C
0-12	A ₁	6.5	5.8	38.1	32.3	85	22.	0	0.40	9	.6	0.3	4	4.7	,	0.07
17-29	Β ₁	6.0	5.0	26.7	17.0	64	8.	8	1.73	6	.2	0.2	7	4.4	1	0.05
32-55	B ₂₁	5.8	4.7	23.3	14.9	64	7.	9	2.89	4	.1	0.0	3			
55-78		6.1	5.2	22.4	15.3	68	8.	9	3.4	3	.0	0.0	14			
82-100	B ₂₂	6.2	5.5	22.3	15.1	68	9.	8	3.2	2	.11	0.0	3		1	
				-	Tel											
8:												٠.				
Depth	Organ Matte			Phospho	rus (m	g.%)		Par	cticle	Size	Ana	lysis	3		Sı	ılphur*
(cm)	C%		0.5M H ₂ SO ₄	Bondorf	•	P Ret.%	<0.002 mm		0.002-	0.02	1	0.2-	1	2.0 mm		Ads.
0-12	4.0	0.38	5	2		60	65		29	4		2	0			1
17-29	1.4	0.20	3	1		75	86		10	4		0	0		1	00
32-55	0.6	0.10	3	2		73	92	-	6	2		0	0		3	02
55-78	0.5	0.08	7	2		77	92		6	2		0	0		1	52
82-100	0.4	0.08	8	4		74	90		8	2		0	0		1	02
							23									
									.							
	1										ل					

^{*}Results of single analysis.

Analysts: K. Giddens, D. McGaveston, J. McCarten

1		DH()	:2.5)		Cat	on Ex	char	nge Ca	apacity	(me.	8)			Reserve	e (me.%)
Depth (cm)	Horizon		CaCl	CEC	Σ Cat	%BS		Ca	Na	-	lg	K		Mg _r	Kc
0-23	A ₁	7.0	6.9	61.2	67.0	(100	0)	58	0.31	L 7.	8	0.	88	11	0.16
31-37	B ₁	7.7	6.9	34.9	34.3	98	3	28.7	0.77	7 4.	7	0.	14		0.05
39-64	B ₂₁	7.7	6.9	32.9	30.1	9:	1	25.4	1.28	3 3.	3	0.	10	5.7	
66-100	B ₂₂	7.7	6.8	29.2	26.1	89	9	22.3	1.86	5 1.	91	0.	05		
	22													٩	
Depth	Organ Matte			Phospho	rus (m	g.%)		Pai	rticle	Size	Anal	Lysis			ulphur* (ppm)
(cm)	C%	N%	0.5M H ₂ SO ₄	Bondorfi	1 -1	P Ret.%	<0.0 m		0.002- 0.02	0.02-		2.0	> 2 m	· (Ads.
0-23	6.0	0.52	125	72		62	6	9	19	5		3	4	1	1
31-37	1.0	0.15	8	2		68	9:	2	8	0		0	0		1
39-64	0.6	0.11	9	2		72	9	0	8	2		0	. 0		. 1
66-100	0.5	0.11	8	3		67	9	1	6	3		0	0		13
										,					
	ts of si														

Analysts: M. Cullinane, D. McGaveston, J. McCarten

Table 26a Houma silty clay loam

SB 9146 A-F

		pH(1	:2.5)				change '	Capacit	y (m]	Reser	
Depth (cm)	Horizon	H ₂ 0	CaC1	CEC	Σ Cat	%BS	Ca	Na	1	Mg	K	ı	^{1g} r	Kc
0-9	A ₁	5.9	5.1	35.6	23.4	66	16.3	0.2	28	5.8	0.9	9	5.9	0.19
11-20	A ₃	6.3	5.1	27.7	17.4	63	9.2	0.4	18	6.6	1.0	9		
22-44	B ₁	5.8	5.0	24.9	15.6	63	7.1	1.6	53	6.1	0.7	2	3.8	0.09
46-59	B ₂₁	5.9	5.2	23.8	15.8	66	7.1	2.7	70	5.8	0.1	5		
67-79	B ₂₂	5.9	5.4	18.7	13.3	71	6.7	2.4	15	4.0	0.1	7		
81-100	B ₃	6.0	5.6	16.0	12.2	76	6.0	2.3	36	3.6	0.2	1		
											2			
Depth	Organ Matte	1		Phospho	rus (m	g.%)	I	Particle	e Siz	e Ana	alysis			Sulphur
(cm)	C%		0.5M H ₂ SO ₄	Bondorf:	1 -1	P Ret.%	<0.002 mm	0.002	0.0	1	0.2-	> 2 m	- 1	Ads.
0-9	4.6	0.37	4	0.9		62	51	36	10		3	0		2
11-20	1.5	0.16	3	0.6		71	65	28	6	;	1	0	ļ	1
22-40	0.8	0.11	4	0.4		84	86	13	1	.	0	0		196
46-59	0.6	0.08	3	0.8		88	85	11	4	.	0	0		224
67-79	0.6	0.07	2	0.8		70	90	5	5	5	0	0		128
81-100	0.4	0.11	3	2		76	95	4	1		0	0		122

^{*}Results of single analysis.

Analysts: K. Giddens, D. McGaveston, J. McCarten

		pH(1:2.5)		Cat	ion E	xchange	Capaci	ty (me	≥.%)			Rese	rve (me.%
Depth (cm)	Horizon	H ₂ 0	CaCl	CEC	Σ Cat	: %B\$	5 C	a N	la	Mg	K	(Mgr	Kc
0-15	A ₁	6.2	5.4	36.9	27.2	68	8 17.	0 0.	87	8.9	,0.	43	4.2	0.07
20-35	B ₁	5.6	4.9	15.2	9.1	6	0 2.	7 1.	72	4.6	0.	11	1.8	0.04
45-55	B ₂	5.3	4.6	21.2	10.4	4	9 2.	9 3.	0	4.3	0.	22		
													598	
Depth	Organ Matte	17		Phosphorus (mg.%) Particle Size Analysis						3		* Sulphur (ppm)		
(cm)	C%	N%	0.5M H ₂ SO ₄	Bondorf:		P Ret.%	<0.002 mm	0.002	0.02		2.0	į .	2.0	Ads.
0-15	5.0	0.38	16	4		75							í	10
20-35	0.6	0.06	14	11		71								305
45-55	0.8	0.09	16	6		82						1.7		.433
				*										

^{*}Results of single analysis.

	Γ	T pH(:2.5)	1	Cati	on Ex	change	Capacity	/ (me.9	b)	Res	erve (me.%
Depth (cm)	Horize		CaCl ₂	CEC	Σ Cat	%BS				J K	Mgr	K _C
0-10	A	6.9	6.1	74.2	72.7	98	50	0.47	21	.1 1.	08 32	0.30
12-44	B ₂	6.5	5.5	62.7	57.1	91	32	0.85	23	.3 0.	95 50	0.41
46-60	c c	6.4	5.4	62.2	58.1	93	33	0.78	23	.9 0.	42	
Depth		Organic Matter			rus (mo	g.%)	I	article	Size .	Analysis	3	Sulphur (ppm)
(cm)	C%	N%	0.5M H ₂ SO ₄	Bondorfi		P Ret.%	<0.002 mm	0.002-	0.02-	0.2-	> 2.0	Ads.
0-10	7.8	0.51	69	38		48	63	30	6	1	0	1
12-44	0.6	0.07	14	8		54	65	27	8	0	0	3
46-60	0.4	0.05	9	5		54	46	44	10	0	0	-36
										8		

*Results of single analysis.

